

Basics of Electrical Circuits

Lecture Topics

Lecture covers:

- System of Units.
- Basic Electrical Quantities:
 - o Current.
 - o Voltage.
 - o Resistor.
 - o Power.
- Simple Circuit elements.
- Introduction to Ohm law.
- Sign Convention.
- law of conservation of energy.

بر متر الطول کا بنه الرسن

نظام الوصات System of Units

2000 m = 2 km

The derived units commonly used in electric circuit theory

Quantity	Unit	Symbol
electric charge electric potential resistance conductance inductance capacitance frequency force energy, work power magnetic flux magnetic flux density	coulomb volt ohm siemens henry farad hertz newton joule watt weber tesla	C V Ω S H F Hz N J W Wb

Factor	Prefix	Symbol	
10° 10 ⁶ 10 ³	giga mega kilo	G M k	
10^{-2} 10^{-3}	centi milli	c m	
10 ⁻⁶ 10 ⁻⁹	micro nano	μ n	
10 ⁻¹²	pico	р	

الكيابي الكيابية الاساسية Basic Electrical Quantities

الدّرة الماء المعادة المعادة المعادة المعادة المعادة المعادة المعادة Basic electric quantities are current, voltage, resistor and power.

Electrical Circuit Diagram

Electric Current (i)

Current (i): is the movement of charge in specified direction or is the rate of change of electrical charge with respect to time, measured in Ampere.

1Coulombs = 1.602×10^{19} Electron charge

$$Current = \frac{Charge}{Time}$$
Or

$$I = \frac{Q}{t}$$

Where:

I = Current in Amperes (A)

Q = Charge in Coulombs (C)

t = time

The System International unit for current is the Ampere (A), where

$$1 A = 1 \frac{C}{s}$$

Alternative Current (AC) is a current that varies sinuously with time.

Direct Current (DC) is a current that remines constant with time.

Voltage (Electric Potential Difference)

Voltage (potential difference) is the energy required to move one coulomb of charge form point a to point b.

Voltage = $\frac{Work}{Charge}$ or $V = \frac{W}{Q}$

Where:

V= potential Difference (Voltage) W= Work done

Q= charge

The system international unit for Voltage is volt (v), where

$$1_{\mathbf{V}} = 1 \frac{\textit{Joule}}{\textit{Coulomb}}$$

- As stated before, to move the electron in a conductor in a particular direction requires some work or energy transfer.
- This work is performed by an external electromotive force (emf)
- This emf is also known as *voltage* or *potential* difference.
- The voltage v_{ab} between two points a and b in an electric circuit is the energy (or work) needed to move a unit charge from a to b.

• To move charge q from point a to point b requires—30 J. Find the voltage drop between points a and b If: $v = \frac{w}{9}$

(a)
$$q = 2 \text{ C}$$
. $V = \frac{-30 \text{ f}}{2 \text{ c}} = -15 \text{ V}$

(a)
$$q = 2 \text{ C}$$
. $V = \frac{-305}{2 \text{ C}} = -15 \text{ V}$
(b) $q = -6 \text{ C}$. $V = \frac{+307}{-60} = 5 \text{ V}$

Resistors

- A resistor is a circuit element that dissipates electrical energy (usually as heat).
- Real-world devices that are modeled by resistors: incandescent light bulb, heating elements (stoves, heaters, etc.), long wires

$$Resistor = \frac{vottage}{Current}$$
or

 $R = \frac{1}{2}$

Where the units are:

R= resistor in Ohm (Ω). V= Voltage on Volt (V) I= Current in Amperes (A)

Electric Power

The power is defined as the work done per unit time. Thus, the power, *P*, either generated or dissipated by a circuit element can be represented by the following relationship:

Power =
$$\frac{\text{Work}}{\text{Time}} = \frac{\text{Work}}{\text{Charge}} \frac{\text{Charge}}{\text{Time}} = \text{Voltage} \times \text{Current}$$

$$P = VI$$

It is easy to verify that the units of voltage (joules/coulomb) times current (coulombs/second) are indeed those of power (joules/second, or watts).

کریں الدار الکھیں البیطی Simple Circuit elements

A circuit is composed of elements (DC voltage sources, DC current sources, resistors) and conductors (wires).

Example:

