M R Ahmed Mahdy

استاتيكا	فيزياء
الكـــترونيات	دوائر كھربين
هيدروليكا	ضلانيكا الانشائان

مدرس خصوصي

حضورى

اونلاين

لجهل الطالب علي

. مقاطع فيديوهات لشرح اطقرر بشكل وافي

. ملخص للمادة Pdf للمذكرة واطراجعة

. عاضرات مباشرة علي برنامج زووم

طناقشة الأجزاء الغير مفهومة

. تواصل مستمر مع معلم اطادة

للنواصل

0567630097

0565657741

4-Vapor Pressure

condensation occur

at the liquid

surface

Definition: Vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with the condensed phases (solid or liquid) at a given temperature in a closed system.

• Evaporation and

 At equilibrium, the evaporation rate equals the condensation rate.

Increasing
temperature
increases the rate
of evaporation and
increases vapor
pressure.

• Molecules in vapor
phase collide with
the walls and lid of
container, causing
pressure.

Definition: is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible.

6-Capillary Rise calculations

(Water: Wetted*
cohesion >adhesion)

σ "Surface tension force"

Σy=0

σ.cosθ.πd=(πd²/4).h.ρ.

σ.cosθ.πd=(πd²/4).h.ρ.g $h = \frac{4\sigma \cos \theta}{1}$

مو تغل الميارة عالما

عرار معاد مع المالج للوكة

6-Viscosity

Viscosity Types

Dynamic viscosity (µ) is expressed as the ratio of shear stress to shear strain.

• Units: N.s/m2 or kg/m.s (kg m-1 s-1)

(Note that m is often expressed in Poise, P, where 10 P = 1 N.s/m²)

- Dimensions: ML-1T-1
- Typical values:

Water =1.14(10⁻³) Ns/m², Air =1.78(10⁻⁵) Ns/m² Mercury =1.552 Ns/m², Paraffin Oil =1.9 Ns/m² <u>Kinematic viscosity (v)</u> is expressed as the ratio of fluid dynamic viscosity to its density.

$$v = \frac{\mu}{\rho}$$

- Units: m²/s
- (Note that n is often expressed in Stokes, St, where 10⁴ St = 1 m²/s)
- Dimensions: ML-1T-1
- Typical values:
 - Water =1.14(10⁻⁶) m²/s, Air =1.46(10⁻⁵) m²/s, Mercury =1.145(10⁻⁴) m²/s, Paraffin Oil =2.375(10⁻³) m²/s

Example2

Water has a surface tension of 0.4 N/m. In a 3-mm diameter vertical tube, if the liquid rises 6 mm above the liquid outside the tube, calculate the wetting angle.

Solution:

$$\omega = 0.4 \text{ N/m}, \quad d = 34 10^{-3} \text{m}, h = 6 \times 10^{-5} \text{m}$$

$$\frac{h}{1} = \frac{400 \cos \theta}{489} \Rightarrow \frac{400 \cos \theta}{400} = \frac{h}{40} \frac{499}{400}$$

$$\cos \theta = \frac{6 \times 10^{-3} \times 3 \times 10^{-3} \times 10^{-0} \times 9.81}{4 \times 0.4} = \frac{4 \times 0.4}{1000}$$

$$\theta = \cos^{-1}(...-) = 83.7^{\circ}$$

Example3

Find: Capillary rise between two vertical glass plates 1 mm apart.

• $s = 7.3 \times 10^{-2} \text{ N/m}$

